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Intersection graphs

Definition

An undirected graph G = (V , E ) is called an intersection graph, if each
vertex v ∈ V can be assigned to a set Sv , such that two vertices of G are
adjacent if and only if the corresponding sets have a nonempty
intersection, i.e. E = {uv | Su ∩ Sv 6= ∅}.
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Intersection graphs

Definition

An undirected graph G = (V , E ) is called an intersection graph, if each
vertex v ∈ V can be assigned to a set Sv , such that two vertices of G are
adjacent if and only if the corresponding sets have a nonempty
intersection, i.e. E = {uv | Su ∩ Sv 6= ∅}.

Definition

A graph G is called an interval graph, if G is the intersection graph of a
set of intervals on the real line.
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Tolerance graphs

Definition (Golumbic, Monma, 1982)

A graph G = (V , E ) is called a tolerance graph, if there is a set
I = {Iv | v ∈ V } of intervals and a set t = {tv | v ∈ V } of positive
numbers, such that uv ∈ E if and only if |Iu ∩ Iv | ≥ min{tu, tv}.
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Tolerance graphs

Definition (Golumbic, Monma, 1982)

A graph G = (V , E ) is called a tolerance graph, if there is a set
I = {Iv | v ∈ V } of intervals and a set t = {tv | v ∈ V } of positive
numbers, such that uv ∈ E if and only if |Iu ∩ Iv | ≥ min{tu, tv}.

Definition

A vertex v of a tolerance graph G = (V , E ) with a tolerance
representation 〈I , t〉 is called a bounded vertex, if tv ≤ |Iv |.

Otherwise, if tv > |Iv |, v is called an unbounded vertex.
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Multitolerance graphs
Motivation and definition

Tolerance graphs have important applications
[Golumbic, Trenk, Tolerance graphs, 2004]:

biology and bioinformatics (comparison of DNA sequences
between organisms, e.g. in BLAST software)

interval −→ DNA sub-sequence

tolerance −→ permissible number of errors

temporal reasoning, resource allocation, scheduling ...

In applications of BLAST, some genomic regions may be:

biologically less significant, or

more error prone than others

=⇒ we want to treat several genomic parts non-uniformly.
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Multitolerance graphs
Motivation and definition

Multitolerance graphs:

` `t rt

t1 t2

rI = [`, r] :

from left and right: different tolerances.
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Multitolerance graphs
Motivation and definition

Multitolerance graphs:

` `t rt

t1 t2

rI = [`, r] :

from left and right: different tolerances.

in the interior part: tolerate a convex combination of t1 and t2.
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Multitolerance graphs
Motivation and definition

Multitolerance graphs:

` `t rt

t1 t2

rI = [`, r] :

Formally:

I(I , `t , rt) = {λ · [`, `t ] + (1− λ) · [rt , r ] : λ ∈ [0, 1]}
(convex hull of [`, `t ] and [rt , r ])
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Multitolerance graphs
Motivation and definition

Multitolerance graphs:

` `t rt

t1 t2

rI = [`, r] :

Formally:

I(I , `t , rt) = {λ · [`, `t ] + (1− λ) · [rt , r ] : λ ∈ [0, 1]}
(convex hull of [`, `t ] and [rt , r ])

Set τ of tolerance intervals of I :

either τ = I(I , `t , rt) for two values `t , rt ∈ I (bounded case),

or τ = R (unbounded case).

In a multitolerance graph G = (V , E ), uv ∈ E whenever:

there exists a tolerance-interval Qu ∈ τu such that Qu ⊆ Iv , or

there exists a tolerance-interval Qv ∈ τv such that Qv ⊆ Iu.
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Complete classification in the hierarchy of perfect graphs

alternately
orientable

weakly
chordal

co-perfectly
orderable

trapezoid

bounded tolerance
parallelogram

cocomparability

bounded multitolerance

multitolerance

perfect

tolerance

[Golumbic, Trenk, Tolerance Graphs, 2004]
[Mertzios, SODA, 2011; Algorithmica, 2014]

George Mertzios (Durham) Dominating Set on (multi)tolerance graphs AGTAC 2015 7 / 23



Tolerance and multitolerance graphs

Several NP-complete problems are known to be polynomially solvable
on tolerance / multitolerance graphs

Some (few) algorithms used the (multi)tolerance representation:
[Parra, Discr. Appl. Math., 1998]
[Golumbic, Siani, AISC, 2002]
[Golumbic, Trenk, Tolerance Graphs, 2004]

Most followed by the containment in weakly chordal / perfect graphs

It seems to be essential to assume (some) given representation:

Tolerance graphs are NP-complete to recognize
[Mertzios, Sau, Zaks, STACS, 2010; SIAM J. Comp., 2011]

Recognition of multitolerance graphs: Open !
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Tolerance and multitolerance graphs
Previously known models

Succinct intersection models are known for:

bounded tolerance graphs (parallelogram representation)
[Langley, PhD, 1993; Bogart et al., Discr. Appl. Math., 1995]
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Tolerance and multitolerance graphs
Previously known models

Succinct intersection models are known for:

bounded tolerance graphs (parallelogram representation)
[Langley, PhD, 1993; Bogart et al., Discr. Appl. Math., 1995]

bounded multitolerance graphs (trapezoid representation)
[Parra, Discr. Appl. Math., 1998]

general tolerance graphs (3D-parallelepiped representation)
[Mertzios, Sau, Zaks, SIAM J. Discr. Math., 2009]

general multitolerance graphs (3D-trapezoepiped representation)
[Mertzios, SODA, 2011; Algorithmica, 2014]

These representations enabled the design of algorithms:

for clique, coloring, independent set, ...
in most cases with (optimal) O(n log n) running time
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Tolerance and multitolerance graphs
Previously known models

In spite of research in the area since [Golumbic, Monma, 1982]:

a few problems remained open for (multi)tolerance graphs

Dominating Set, Hamiltonian Cycle
[Spinrad, Efficient Graph Representations, 2003]
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Tolerance and multitolerance graphs
Previously known models

In spite of research in the area since [Golumbic, Monma, 1982]:

a few problems remained open for (multi)tolerance graphs

Dominating Set, Hamiltonian Cycle
[Spinrad, Efficient Graph Representations, 2003]

both these problems are:

NP-complete on weakly chordal graphs
[Booth, Johnson, SIAM J. Computing, 1982]
[Müller, Discr. Math, 1996]

polynomial on bounded (multi)tolerance (and cocomparability) graphs
[Kratsch, Stewart, SIAM J. Discr. Math, 1993]
[Deogun, Steiner, SIAM J. Computing, 1994]

the known models do not provide (enough) insight for these problems

⇒ new models are needed !
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Our results

New geometric representations:

shadow representation for multitolerance graphs

special case: horizontal shadow representation for tolerance graphs
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Our results

New geometric representations:

shadow representation for multitolerance graphs

special case: horizontal shadow representation for tolerance graphs

Applications of these new models:

Dominating Set is APX-hard on multitolerance graphs

(i.e. no PTAS unless P = NP)

Dominating Set is polynomially solvable on tolerance graphs

Independent Dominating Set is polynomially solvable on multitolerance
graphs (by a sweep-line algorithm)
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Our results

New geometric representations:

shadow representation for multitolerance graphs

special case: horizontal shadow representation for tolerance graphs

Implications of the new representations:

we can reduce optimization problems on these graphs
−→ to problems in computational geometry

Dominating Set is the first problem with different complexity
in tolerance & multitolerance graphs

−→ surprising dichotomy result

useful for sweep-line algorithms
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Bounded multitolerance graphs

Lemma (Parra, 1998)

Bounded multitolerance graphs coincide with trapezoid graphs.
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Theorem (Langley 1993; Bogart et al. 1995)

Bounded tolerance graphs coincide with parallelogram graphs.
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The trapezoepiped representation
A 3D-intersection model for multitolerance graphs

bounded vertices −→ 3D-trapezoepipeds

unbounded vertices −→ lifted line segments

⇒ an intersection model for multitolerance graphs:
[Mertzios, SODA, 2011; Algorithmica, 2014]
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The trapezoepiped representation
A 3D-intersection model for multitolerance graphs

Special case: parallelepiped representation for tolerance graphs:
[Mertzios, Sau, Zaks, SIAM J. Discr. Math., 2009]
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The shadow representation

All information is captured by the intersection of every 3D-object
with the plane y = 0

Associate to every bounded vertex u:
a line segment Lu on the plane

Associate to unbounded vertex v :
a point pv on the plane

x

y
z

x

z

George Mertzios (Durham) Dominating Set on (multi)tolerance graphs AGTAC 2015 13 / 23



The shadow representation

All information is captured by the intersection of every 3D-object
with the plane y = 0

Associate to every bounded vertex u:
a line segment Lu on the plane

Associate to unbounded vertex v :
a point pv on the plane

x

y
z

x

z

George Mertzios (Durham) Dominating Set on (multi)tolerance graphs AGTAC 2015 13 / 23



The shadow representation

All information is captured by the intersection of every 3D-object
with the plane y = 0

Associate to every bounded vertex u:
a line segment Lu on the plane

Associate to unbounded vertex v :
a point pv on the plane

x

y
z

x

z

George Mertzios (Durham) Dominating Set on (multi)tolerance graphs AGTAC 2015 13 / 23



The shadow representation

All information is captured by the intersection of every 3D-object
with the plane y = 0

Associate to every bounded vertex u:
a line segment Lu on the plane

Associate to unbounded vertex v :
a point pv on the plane

x

y
z

x

z

George Mertzios (Durham) Dominating Set on (multi)tolerance graphs AGTAC 2015 13 / 23



The shadow representation

Definition

The shadow representation of a multitolerance graph G is a tuple (P ,L):
P is the set of all points pv and

L is the set of all line segments Lu
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The shadow representation

Definition

The shadow representation of a multitolerance graph G is a tuple (P ,L):
P is the set of all points pv and

L is the set of all line segments Lu

Special case: tolerance graphs

parallelepipeds ⇒ horizontal line segments

⇒ horizontal shadow representation
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The shadow representation

Definition

The shadow representation of a multitolerance graph G is a tuple (P ,L):
P is the set of all points pv and

L is the set of all line segments Lu

Question: How do we interpret adjacencies in such a representation?

Answer: We exploit the “shadows” of the line segments and the points.
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The shadow representation

Definition (shadow)

For a point t = (tx , ty ) ∈ R2 the shadow of t is the region
St = {(x , y) ∈ R2 : x ≤ tx , y − x ≤ ty − tx}.

For every line segment Lu the shadow of Lu is the region
SLu =

⋃
t∈Lu St .

pu,1

pu,2

Lut

St SLu
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The shadow representation

The shadows capture all adjacencies:

Lemma

Let G = (V , E ) be a multitolerance graph and u, v be bounded vertices.
Then uv ∈ E if and only if Lv ∩ SLu 6= ∅ or Lu ∩ SLv 6= ∅.

Lu

SLu

Lv

SLv

uv ∈ E : uv /∈ E :

Lu

SLu

Lv

SLv
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The shadow representation

The shadows capture all adjacencies:

Lemma

Let G = (V , E ) be a multitolerance graph, u be a bounded vertex
and v be an unbounded vertex. Then uv ∈ E if and only if pv ∈ SLu .
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The shadow representation

Main idea for the adjacencies:

x

y
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z
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uv /∈ E :
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The shadow representation

Main idea for the adjacencies:

x

y
z

x

z
Lu

Lv

uv ∈ E :

Observation

The shadow representation is not an intersection model.
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Inevitable vertices

Definition

Let v be an unbounded vertex of a multitolerance graph G
(in a certain trapezoepiped representation). If making v a bounded vertex
creates a new edge in G , then v is called inevitable.

Otherwise, v is called evitable.
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Tv5

Tv7
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Inevitable vertices

Definition

Let v be an inevitable unbounded vertex of a multitolerance graph G
(in a certain trapezoepiped representation).

A vertex u is called a hovering vertex of v if Tv lies above Tu.
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Inevitable vertices

In a shadow representation:

Lemma

Let v be an inevitable unbounded vertex. Then a vertex u is a hovering
vertex of v if and only if:

Lu ∩ Sv 6= ∅ (when u is bounded)

pu ∈ Sv (when u is unbounded)

pv

Lu

SLu

pv

pu

u is a hovering vertex of v:
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Canonical trapezoepiped representations

Definition

A trapezoepiped representation of a multitolerance graph G
is called canonical if every unbounded vertex is inevitable.

Theorem (Mertzios, SODA, 2011; Algorithmica, 2014)

Given a trapezoepiped representation of a multitolerance graph G ,
a canonical representation of G can be computed in O(n log n) time.

Definition

A shadow representation of a multitolerance graph G is called canonical
if it can be obtained by a canonical trapezoepiped representation.

In the algorithms:

it is useful to assume canonical representations
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Dominating set on tolerance graphs

W.l.o.g. we assume:

a connected tolerance graph

a canonical horizontal shadow representation

Lemma

If an unbounded vertex v is in a minimum dominating set S, then w.l.o.g.:

S does not contain any neighbor of v ,

S does not contain any hovering vertex of v .

Therefore:

an unbounded vertex v in the solution “cuts” the representation
into “left” and “right”

⇒ dynamic programming, using the position of the unbounded vertices
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Dominating set on tolerance graphs

Dynamic programming:

ri
Li

ri′

Lw′

Lwlw

lw′

Li′
pj

pq′

pq

rz

rz′

Lz

Lz′

p1
p2

last unbounded
(so far)

only unbounded
only bounded

remaining
solution
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Dominating set on tolerance graphs

Dynamic programming:
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lw′

Li′
pj

pq′

pq

rz

rz′

Lz

Lz′

p1
p2

last unbounded
(so far)

only unbounded
only bounded

remaining
solution

Separate dynamic programming: “bounded” dominating set

use only bounded vertices to dominate the (sub)graph

specifying the “leftmost”and “rightmost” bounded vertices

−→ not always possible to find a feasible solution !
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Dominating set on multitolerance graphs

On a general (non-horizontal) shadow representation:

domination set is APX-hard

reduction from Special 3-Set Cover
(special case of the set cover problem)

heavily use the different slopes of the line segments

the spirit of the reduction is inspired from:
[Chan, Grant, Comp. Geometry, 2014]

pwt

pxt
pyt

pzt

pai

paj

L5m+1 L5m+2
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On a general (non-horizontal) shadow representation:

domination set is APX-hard

reduction from Special 3-Set Cover
(special case of the set cover problem)

heavily use the different slopes of the line segments

the spirit of the reduction is inspired from:
[Chan, Grant, Comp. Geometry, 2014]

pwt

pxt
pyt

pzt

pai

paj

L5m+1 L5m+2

In contrast to dominating set:

independent dominating set is polynomial on multitolerance graphs

Sweep line algorithm from right to left

George Mertzios (Durham) Dominating Set on (multi)tolerance graphs AGTAC 2015 21 / 23



Open problems

Can we significantly improve the time complexity of dominating set
on tolerance graphs?

Can we solve in polynomial time the Hamiltonian Path / Cycle
problems:

on tolerance graphs?
on multitolerance graphs?

Recognition of multitolerance graphs ?

recognition of trapezoid graphs → polynomial

recognition of tolerance
and bounded tolerance (parallelogram) graphs → NP-complete
[Mertzios, Sau, Zaks, STACS, 2010; SIAM J. Comp., 2011]

Recognition of unit / proper (multi)tolerance graphs ?
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Thank you for your attention!
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